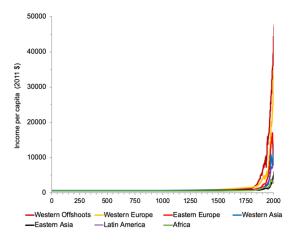
Unified Growth Theory

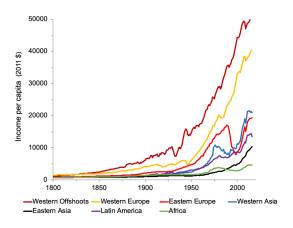
Oded Galor


June 10, 2024

Two Mysteries

Two Mysteries

- The Mystery of Growth:
 - Why economic growth emerged only in the past two centuries, after hundreds of thousands of years of stagnation?
- The Mystery of Inequality
 - What is the origin of the vast inequality in income per capita across countries and regions?


The Mystery of Growth: Income per Capita: 1–2020

Data Source: Maddison Project (2020)

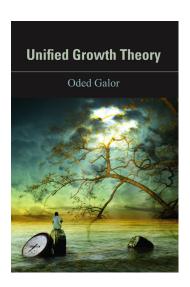
Oded Galor

Great Divergence: 1800-2018

Data Source: Maddison Project (2020)

Resolution of these Mysteries

- Requires the identification of The 'Wheels of Change' that:
 - Governed the journey of humanity over the entire course of history
 - Led to an epoch of Malthusian stagnation
 - Triggered the transition from stagnation to growth
 - Contributed to the differential timing of the transition across the globe


Phases of Development

- The Malthusian Epoch
- The Post-Malthusian Regime
- The Modern Growth Regime

Neoclassical Growth Theory

- Does not shed any light on the two main mysteries of the growth process:
 - Economies are assumed to operate in the modern growth regime
 - No insights about the origins of economic growth
 - \bullet Diminishing returns to physical & human capital and technological progress
 - Reduction in inequality & convergence counter-factual
 - ullet No insights about the mystery of inequality

Unified Growth Theory

8 / 1

Contribution of Unified Growth Theory

- Resolution of the Mystery of Growth
 - The origins of economic growth in the past two centuries, after hundreds of thousands of years of stagnation
- Contribution to the understanding of the Mystery of Inequality
 - The origin of the vast inequality in income per capita across countries and regions
 - The role of deep-rooted historical and pre-historical factors in global inequality

Unified Growth Theory

- A unified framework that captures the process of development in its entirety:
 - The epoch of Malthusian stagnation
 - The forces that permitted the take-off from the Malthusian epoch
 - The emergence of human capital as a central engine of growth
 - The onset of the demographic transition
 - The emergence of sustained economic growth
 - The rise in inequality in income per capita across countries

Unified Growth Theory - Theoretical Challenges

- Origins of the phase transition:
 - The transition from stagnation to growth
 - The escape from a stable Malthusian trap
- Hypothetical mechanisms:
 - Shock in an economy with multiple stable equilibria
 - Inconsistent with a gradual increase in TFP growth
 - A gradual escape from an absorbing (stable) equilibrium
 - Contradiction to the mere concept of a stable equilibrium

Phase Transition: Origins

- A gradual evolution of a latent force ultimately generates a phase transition:
 - Example: A critical temperature level beyond which a transition from liquid to gas takes place
- Once the latent force reaches a critical level:
 - The dynamical system changes qualitatively (bifurcation of equilibria):
 - The Malthusian equilibrium vanishes
 - The economy gravitates towards the Modern Growth Regime

Oded Galor

Phase Transition

Phase Transition: Mechanism

- During the Malthusian epoch
 - Population size & quality ⇒ Technological progress
 - Technological progress ⇒ Population size & quality
- Technological progress accelerated & ultimately reaches a critical threshold
 - Investment in human capital (HC) became profitable
 - HC enabled individuals to cope with rapid technological change
- Human capital formation triggered a decline in fertility & population growth
 - The Malthusian equilibrium vanishes
 - The growth process freed from the counterbalancing effect of population
- Tech progress, human capital formation & decline in population growth
 - ⇒ Sustained economic growth
- Variations in the timing of the take-off
 - \Rightarrow Divergence in income per capita in the past two centuries

Characteristics of the Main Transitions

- Transition from Malthusian to Post-Malthusian Regime:
 - Faster rates of technological progress
 - Faster rate of population growth
 - Insignificant investment in the quality of the population
 - Onset of growth in income per capita
- Transition from the Post-Malthusian to Modern Growth Regime:
 - Faster rate of technological progress
 - Decline in population growth
 - Investment in the quality of the population
 - Faster growth of income per capita

Suggestive Evidence

- The underlying forces that govern these transitions:
 - The effect of changes in the technological progress on:
 - Population size & quality
 - The effect of changes in the size & quality of the population on:
 - Technological progress

The Basic Structure of the Model

- Overlapping-generations economy
- t = 0, 1, 2, 3...
- One homogeneous good
- 2 factors of production:
 - Labor (measured in efficiency units)
 - Land

Factor Supply

- Land is fixed over time
 - Surface of planet earth
- Efficiency units of labor evolves endogenously
 - Determined by households' decisions about:
 - Their desirable number of children
 - The level of human capital of each child

Main Elements

- The Malthusian Structure
- Sources of Technological Progress
- Origins of Human Capital Formation
- Triggers of the Demographic Transition

The Malthusian Structure

- A subsistence consumption constraint
- Positive effect of income on population

•
$$y \uparrow \Longrightarrow L \uparrow$$

- Fixed factor of production Land
 - $L \uparrow \Longrightarrow AP_L \downarrow \Longrightarrow y \downarrow$
- Output per capita fluctuates around a constant level in the long-run

Production

• The output produced in period t

$$Y_t = H_t^{\alpha} (A_t X)^{1-\alpha}$$

- $H_t \equiv$ efficiency units of labor
- $A_t \equiv$ technological level
- $X \equiv land$
- Output per worker produced at time t

$$y_t = h_t^{\alpha} x_t^{1-\alpha}$$

- $h_t \equiv H_t/L_t \equiv$ efficiency units per-worker
- $x_t \equiv (A_t X)/L_t \equiv$ effective resources per worker

The Malthusian Structure – Effects of Technological Progress

- Very short-run (for a given population):
 - $A_t \uparrow \implies y_t \uparrow \text{ (above } \bar{y})$
- Short-run (initial adjustment of population):
 - $y_t \uparrow \Longrightarrow L_t \uparrow$
- Long-run (population reaches a new steady-state):
 - $L_t \uparrow \Longrightarrow y \downarrow \text{ (back to } \bar{y}\text{)}$

Sources of Technological Progress

- Earlier stages of development
 - Population size positively affects technological progress:

$$L_t \uparrow \implies A_{t+1} \uparrow$$

- Channels:
 - Supply of innovations
 - Demand for innovations
 - Diffusion of knowledge
 - Division of labor
 - Extent of trade

Sources of Technological Progress

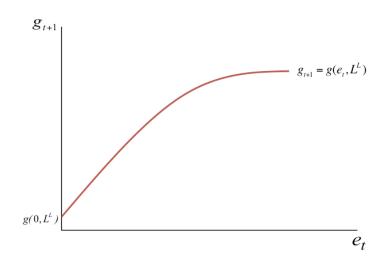
- All Stages of Development
 - Human capital positively affects technological progress

$$e_t \uparrow \implies A_{t+1} \uparrow$$

 Educated individuals have a comparative advantage in adopting & advancing new technologies

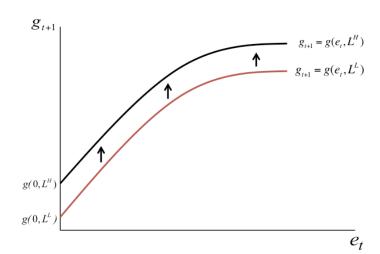
Technological Progress

$$g_{t+1} \equiv \frac{A_{t+1} - A_t}{A_t} = g(e_t, L_t)$$


- $ullet g_{t+1} \equiv ext{ rate of tech progress}$
- ullet e_t \equiv average level of education
- $L_t \equiv$ population size

Technological Progress

$$g_{t+1} = g(e_t, L_t)$$


- $g_e(e_t, L_t) > 0$ and $g_{ee}(e_t, L_t) < 0$
 - Education has a positive and diminishing effect of technological progress
- $g_L(e_t, L_t) > 0$ and $g_{LL}(e_t, L_t) < 0$
 - The scale of the economy has a positive and diminishing effect on technological progress
- g(0, L) > 0 for L > 0
 - Technological progress is positive as long as humans are present

Technological Progress

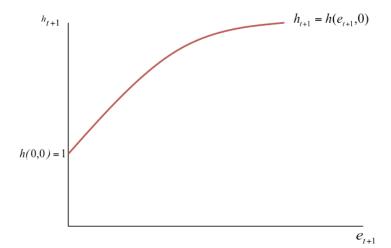
Oded Galor

The Effect of Population Size on Technological Progress

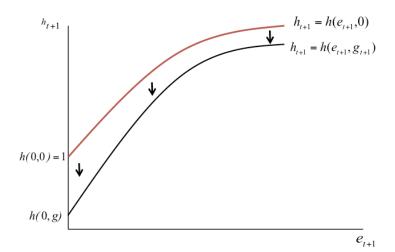
Oded Galor

Origins of Human Capital Formation

- The increase in the rate of technological progress increases the demand for human capital
 - Human capital permits individuals to better cope with a changing technological environment


Human capital of an individual who joins the labor force in period t+1

$$h_{t+1} = h(e_{t+1}, g_{t+1})$$


- ullet $e_{t+1}\equiv$ the individual's education level (determined by parental investment, subject to their subsistence constraint, in period t)
- $g_{t+1} \equiv$ rate of tech progress

$$h_{t+1} = h(e_{t+1}, g_{t+1})$$

- $h_e(e,g) > 0$ and $h_{ee}(e,g) < 0$
 - HC is increasing (in decreasing rates) in the parental time investment in the education of the child
- ullet $h_g(e,g)<0$ and $h_{gg}(e,g)>0$
 - Obsolescence of HC in a changing technological environment
- $h_{eg}(e, g) > 0$
 - Education lessens the obsolescence of HC in a changing technological environment
- h(0, g) > 0
 - Basic level of human capital

Oded Galor

Triggers of the Demographic Transition

- The rise in the demand for human capital induces parents to substitute quality for quantity of children
- The rise in income along with the rise in the potential return to human capital generates:
 - An income effect more income to spend on children
 - Substitution effects
 - The opportunity cost of raising children increases
 - Return to investment in child quality increases

Triggers of the Demographic Transition

- Early phase of industrialization:
 - The income effect dominates (moderate demand for human capital & subsistence constraint becomes less binding):
 - Population growth & human capital formation increase:
- Later part of the second phase of industrialization:
 - The substitution effect dominates (higher demand for human capital):
 - Population growth declines & human capital formation increases

UGT: Modeling Individuals

Individuals

- Live for 2 periods
- Childhood (1st Period):
 - Consume a fraction of parental time endowment
 - The required time increases with child quality
 - $\tau \equiv$ time required to raise a child, regardless of quality
 - ullet $au+e_{t+1}\equiv$ time to raise a child with education e_{t+1}
- Parenthood (2nd Period):
 - Allocate the time endowment between childrearing and work
 - Choose the optimal mixture of child quantity and quality
 - Consume

Preferences

The utility function of individual t (adult at time t)

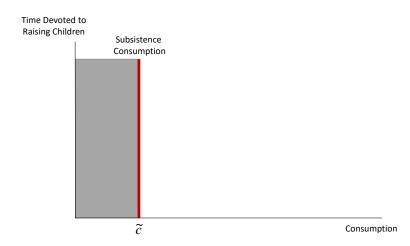
$$u^{t} = (c_{t})^{(1-\gamma)} (n_{t}h_{t+1})^{\gamma}$$

- $c_t \equiv$ consumption of individual t
- $n_t \equiv$ number of children of individual t
- $h_{t+1} \equiv$ level of human capital of each child

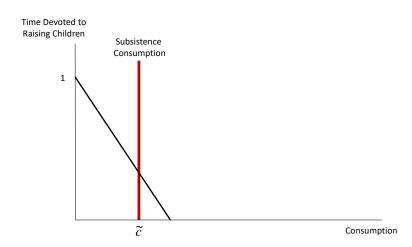
Constraints

Budget and Subsistence Consumption Constraints

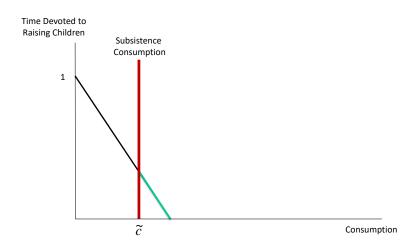
$$z_t n_t (\tau + e_{t+1}) + c_t \le z_t$$

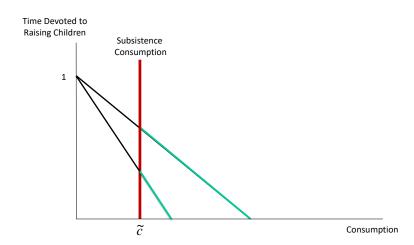

- $z_t \equiv$ potential income of individual t
- $\tau \equiv$ time required to raise a child, regardless of quality
- $\tau + e_{t+1} \equiv$ time needed to raise a child with education e_{t+1}
- $z_t(\tau + e_{t+1}) \equiv$ opportunity cost of raising 1 child with education e_{t+1}

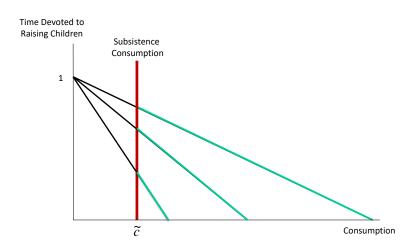
$$z_t \equiv y_t$$

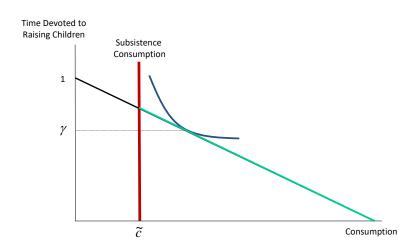

• Subsistence consumption constraint:

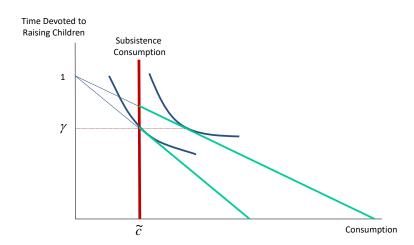
$$c_t > \tilde{c}$$

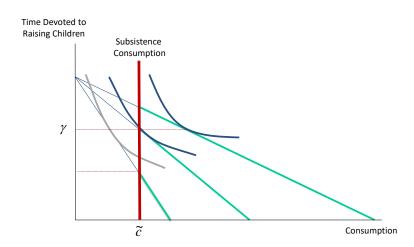

The Subsistence Consumption Constraint

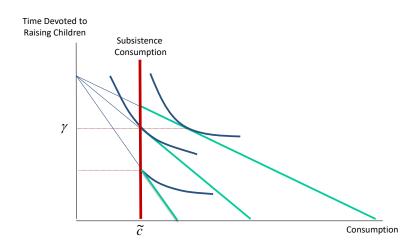

Subsistence Consumption & Budget Constraints

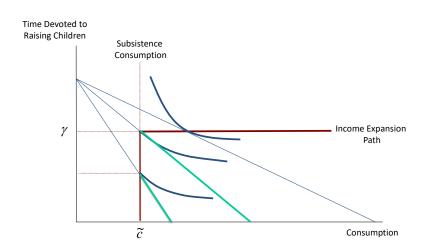

Subsistence Consumption & Budget Constraints

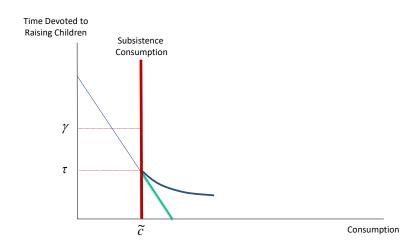

Subsistence Consumption & Budget Constraints

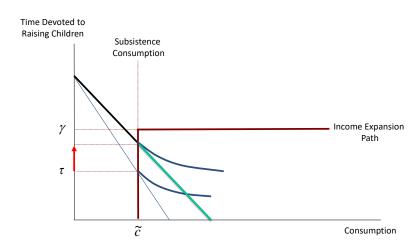

Subsistence Consumption & Budget Constraints

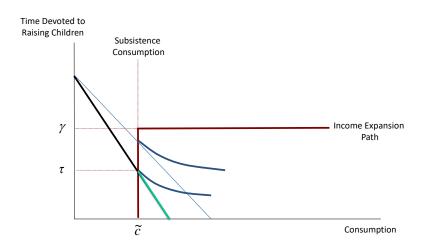

Optimization - Subsistence Constraints is not Binding

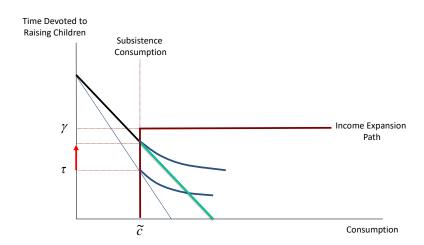

Optimization - Subsistence Constraints is not Binding

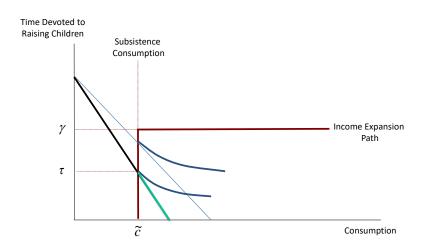

Optimization - Subsistence Constraints is Binding


Optimization - Subsistence Constraints is Binding

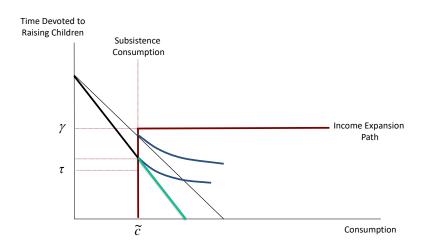

Optimization - Income Expansion Path

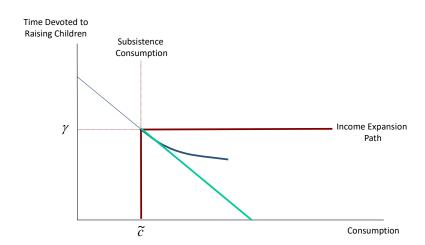

Optimization - Malthusian Steady-State Equilibrium

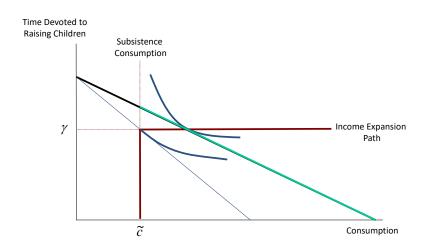

Optimization - Impact of Tech Progress in the Malthusian Epoch (SR)

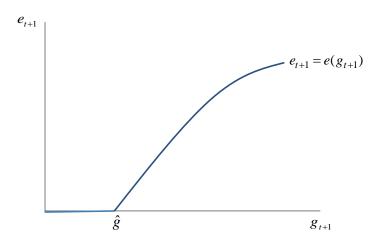

Optimization - Impact of Tech Progress in the Malthusian Epoch (LR)


Optimization - Impact of Tech Progress in the Malthusian Epoch (SR)


Optimization - Impact of Tech Progress in the Malthusian Epoch (LR)


Optimization - Additional Tech Progress in the Malthusian Epoch (SR)


Optimization - Additional Tech Progress in the Malthusian Epoch (LR)


Optimization - Impact of Technological Progress (Eve of the Take-off)

Optimization - Escape from the Malthusian Trap

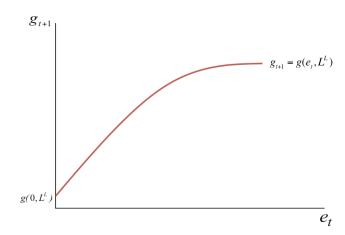
Optimization - Investment in Child Quality

The Dynamical System

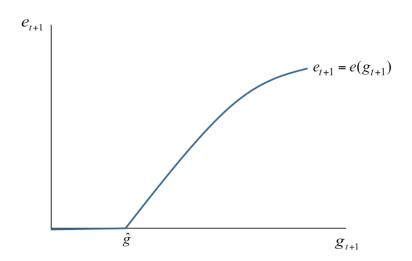
A sequence $\{x_t, e_t, g_t, L_t\}_{t=0}^{\infty}$ such that:

$$\begin{cases} g_{t+1} = g(e_t, L_t) \\ e_{t+1} = e(g_{t+1}) = e(g(e_t, L_t)) \end{cases}$$

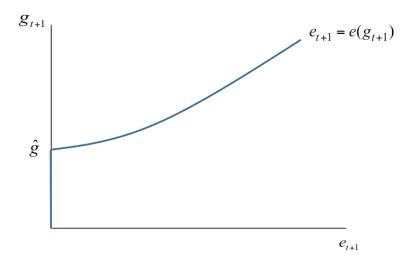
$$L_{t+1} = n_t L_t = n(e_t, g_t, x_t, L_t)$$

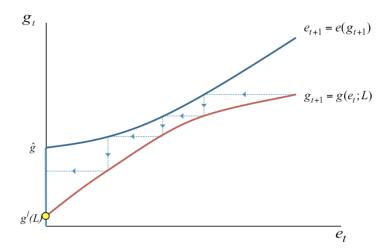

$$x_{t+1} = \frac{A_{t+1}X}{L_{t+1}} = \phi(e_t, g_t, x_t, L_t)$$

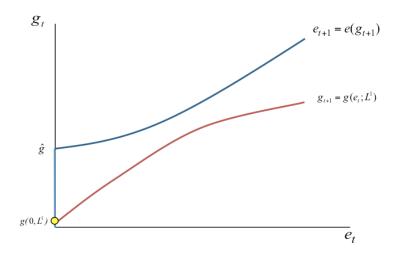
The Conditional Evolution of Technology and Education

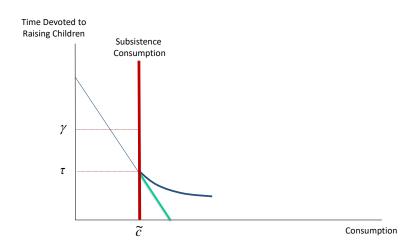

A sequence $\{g_t, e_t; L\}_{t=0}^{\infty}$ such that:

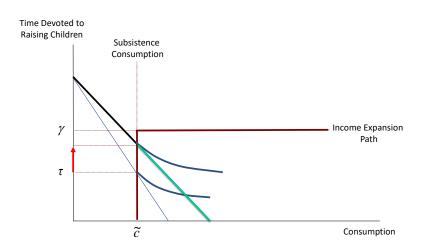
$$\left\{ \begin{array}{l} g_{t+1} = g(e_t; L) \\ \\ e_{t+1} = e(g_{t+1}) \end{array} \right.$$

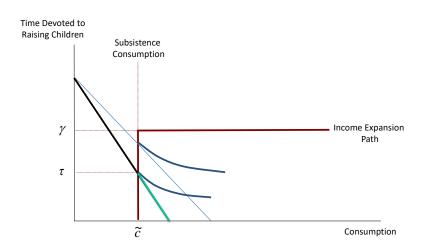

The Effect of Education on Technology

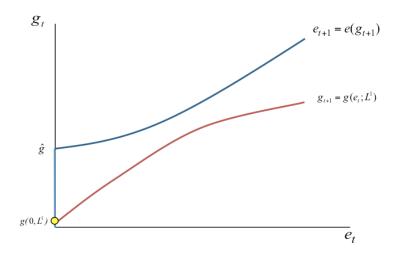

The Effect of Technology on Education

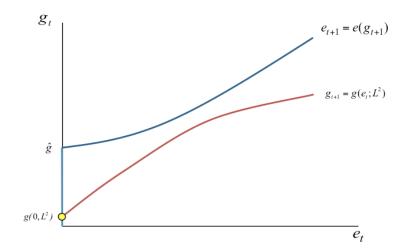

The Effect of Technology on Education: Flipped Axis

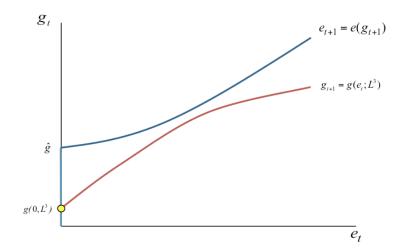

The Evolution of Education and Technology: For a Given L

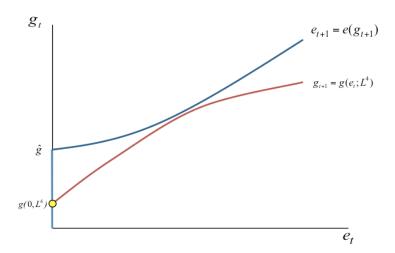

The Evolution of Education and Technology (Initial Population $L = L^1$)

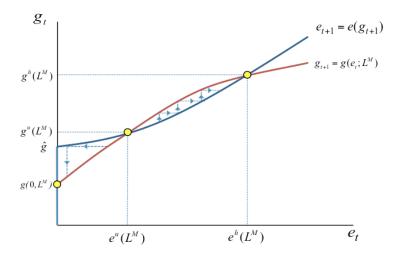

Optimization - Malthusian Steady-State Equilibrium (Population $L=L^1$)

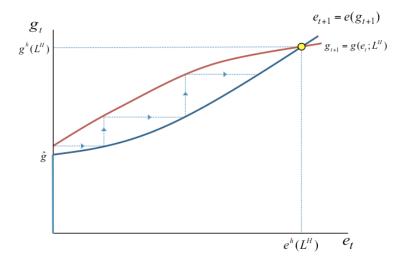

Optimization - Impact of Tech Progress in the Malthusian Epoch (SR)

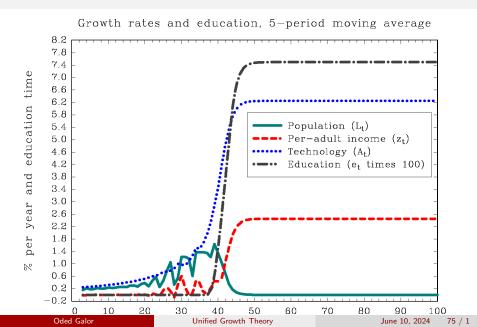

Optimization - Impact of Tech Progress in the Malthusian Epoch (LR)


The Evolution of Education and Technology (Initial Population $L = L^1$)


The Evolution of Education and Technology $(L = L^2)$


The Evolution of Education and Technology $(L = L^3)$


The Evolution of Education and Technology $(L = L^4)$


The Evolution of Education and Technology $(L = L^M)$

The Evolution of Education and Technology $(L = L^H)$

Simulation

Implications

Implications

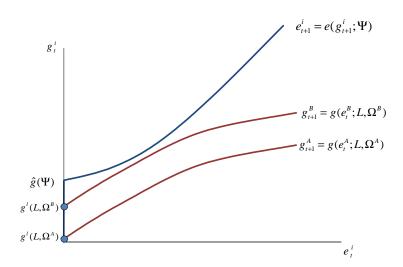
- The Malthusian interaction between technology & population
 - Acceleration in technological progress
 - Industrial demand for human capital
 - Human capital formation
 - \implies Decline in fertility rates
 - ullet \Longrightarrow Further technological progress
 - Decline in population growth
 - ullet \Longrightarrow Economic growth is freed from counterbalancing effects of population
 - Technological progress, human capital & decline in population growth
 - ⇒ Sustained economic growth

Implications for Comparative Development

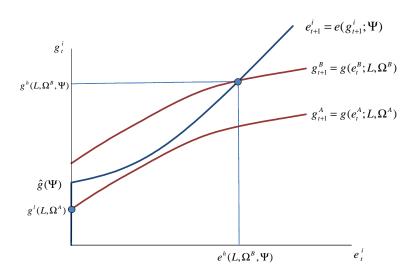
- Variations in the timing of the take-off contributed significantly to the divergence in income per capita in the past two centuries
- Differences in the economic performance across countries reflect:
 - Variations in country-specific characteristics that affect:
 - The pace of technological progress
 - The intensity of human capital formation

Country-Specific Characteristics Conducive for Technological Progress

$$g_{t+1}^i = g(e_t^i, L_t^i, \Omega_t^i)$$


 $\Omega_t^i \equiv$ characteristics affecting tech progress in country i:

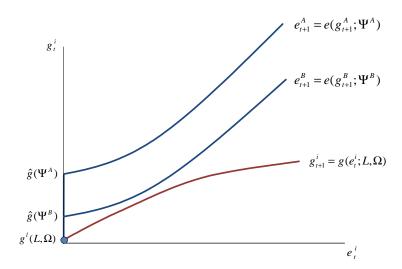
- Protection of intellectual property rights (policy)
- The stock of knowledge within a society The Scientific Revolution
- The propensity of a country to trade (geography & policy)
 - Technological diffusion
 - Specialization and technological progress via learning by doing


Country-Specific Characteristics Conducive for Technological Progress

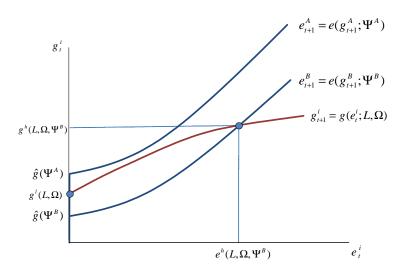
- Cultural and religious composition of society
 - Attitude toward knowledge creation and diffusion (e.g., The Inquisition)
- The composition of interest groups in society
 - Incentives to block or promote innovation (e.g., Luddites; landowners)
- Cultural diversity
 - Cultural fluidity fosters the adoption of new technologies
- Abundance of natural resources
 - Complementary for industrialization (e.g., Coal & Steam engine)

Country-Specific Characteristics Conducive for Technological Progress

Earlier Take-off in Country B



ullet For country-specific characteristics Ψ^i_t


$$e_{t+1}^i = e(g_{t+1}^i; \Psi_t^i) \left\{ \begin{array}{ll} = 0 & \text{if} & g_{t+1}^i \leq \hat{g}(\Psi_t^i), \\ \\ > 0 & \text{if} & g_{t+1}^i > \hat{g}(\Psi_t^i). \end{array} \right.$$

- Ability of individuals to finance the cost of education and the forgone earnings
 - Extent of human capital formation
- The availability, accessibility, and quality of public education
 - Extent of human capital formation
- Cultural and religious composition of society
 - Attitude towards education
- The stock of knowledge in society
 - Productivity of human capital formation

- The propensity of a country to trade
 - Skill-intensity in production and its effect on the demand for HC
- The effect of geographical attributes on health
 - Return to investment in human capital (e.g., Malaria, Hookworm)
- Composition of religious groups within a society and their attitude towards literacy (e.g., Judaism, Protestantism)
- Social status associated with education

Earlier Take-off in Country B

Concluding Remarks

- UGT suggests that:
 - The transition from stagnation to growth was an inevitable by-product of the process of development
 - The inherent Malthusian interaction between technology and population, accelerated the pace of technological progress, and eventually brought an industrial demand for human capital
 - Human capital formation, triggered a demographic transition, enabling economies to convert a larger share of the fruits of factor accumulation and technological progress into growth of income per capita
 - Variations in the timing of the take-off contributed significantly to the divergence in income per capita in the past two centuries

Concluding Remarks

- UGT uncovers:
 - The historical origins of vast and persistent inequality across countries
 - $\bullet\,$ The forces that triggered the transition of DCs from stagnation to growth
 - The hurdles faced by LDCs in their take-off from stagnation to growth
 - The factors that hindered convergence across countries
 - The role of deep rooted factors in comparative development