The Out of Africa Hypothesis of Comparative Development

Oded Galor

June 18, 2024

1 / 1

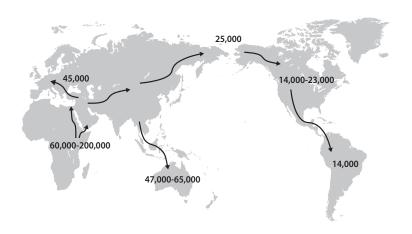
• The migration of Homo sapiens out of Africa 60,000-90,000 BP affected

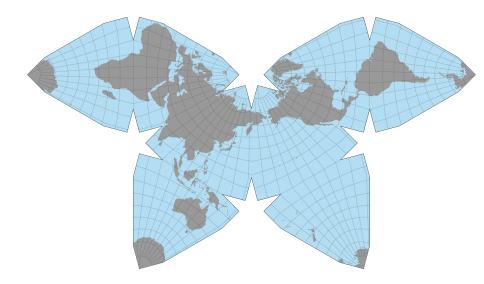
- The migration of Homo sapiens out of Africa 60,000-90,000 BP affected
 - The distribution of human diversity across the globe

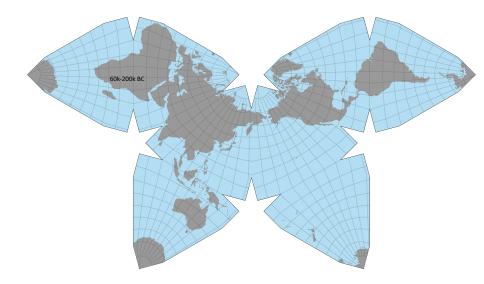
- The migration of Homo sapiens out of Africa 60,000-90,000 BP affected
 - The distribution of human diversity across the globe
 - Lower diversity at greater migratory distances from East Africa

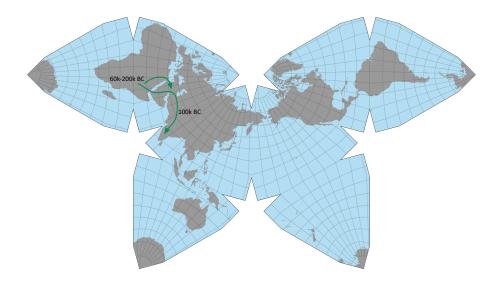
- The migration of Homo sapiens out of Africa 60,000-90,000 BP affected
 - The distribution of human diversity across the globe
 - Lower diversity at greater migratory distances from East Africa
- Moderate level of population diversity is conducive for productivity

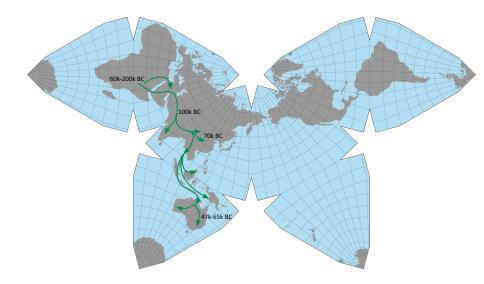
- The migration of Homo sapiens out of Africa 60,000-90,000 BP affected
 - The distribution of human diversity across the globe
 - Lower diversity at greater migratory distances from East Africa
- Moderate level of population diversity is conducive for productivity
 - Balances between:

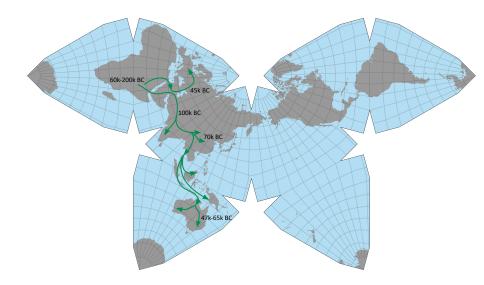

- The migration of Homo sapiens out of Africa 60,000-90,000 BP affected
 - The distribution of human diversity across the globe
 - Lower diversity at greater migratory distances from East Africa
- Moderate level of population diversity is conducive for productivity
 - Balances between:
 - Adverse effects of diversity on social cohesiveness

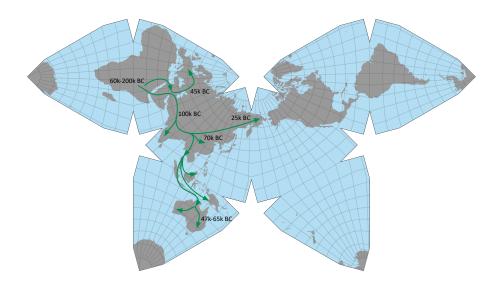

- The migration of Homo sapiens out of Africa 60,000-90,000 BP affected
 - The distribution of human diversity across the globe
 - Lower diversity at greater migratory distances from East Africa
- Moderate level of population diversity is conducive for productivity
 - Balances between:
 - Adverse effects of diversity on social cohesiveness
 - Beneficial effects of diversity on cross-fertilization & innovation

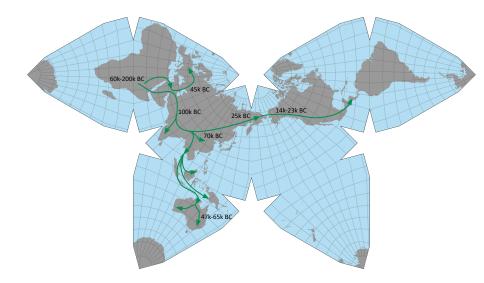

- The migration of Homo sapiens out of Africa 60,000-90,000 BP affected
 - The distribution of human diversity across the globe
 - Lower diversity at greater migratory distances from East Africa
- Moderate level of population diversity is conducive for productivity
 - Balances between:
 - Adverse effects of diversity on social cohesiveness
 - Beneficial effects of diversity on cross-fertilization & innovation
- The Out of Africa Migration have had a persistent impact on:

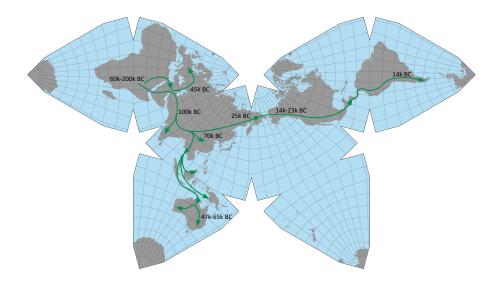

- The migration of Homo sapiens out of Africa 60,000-90,000 BP affected
 - The distribution of human diversity across the globe
 - Lower diversity at greater migratory distances from East Africa
- Moderate level of population diversity is conducive for productivity
 - Balances between:
 - Adverse effects of diversity on social cohesiveness
 - Beneficial effects of diversity on cross-fertilization & innovation
- The Out of Africa Migration have had a persistent impact on:
 - Inequality in the wealth of nations


The Exodus of Homo sapiens from Africa 60,000-90,000 BP







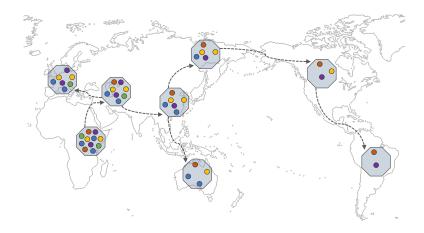


During the exodus of modern humans from Africa

Departing populations:

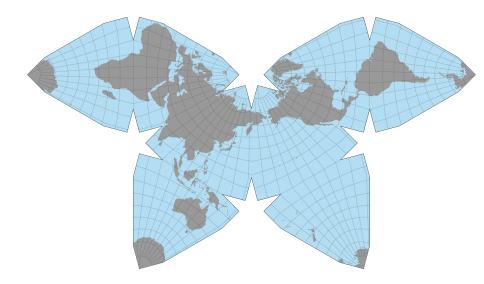
During the exodus of modern humans from Africa

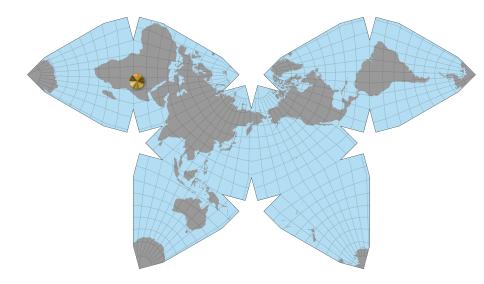
- Departing populations:
 - Carried a subset of diversity of their parental colonies

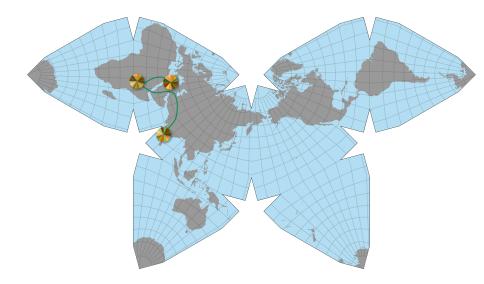

During the exodus of modern humans from Africa

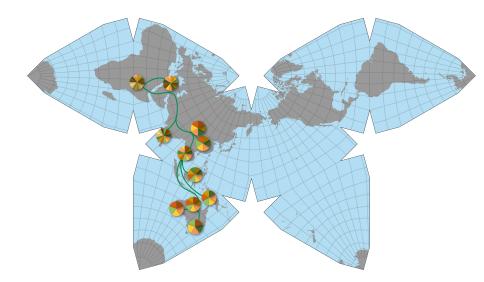
- Departing populations:
 - Carried a subset of diversity of their parental colonies
- Migration was sequential

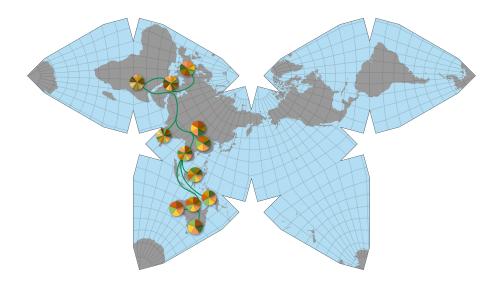
During the exodus of modern humans from Africa


- Departing populations:
 - Carried a subset of diversity of their parental colonies
- Migration was sequential
 - Lower diversity at greater migratory distances from East Africa

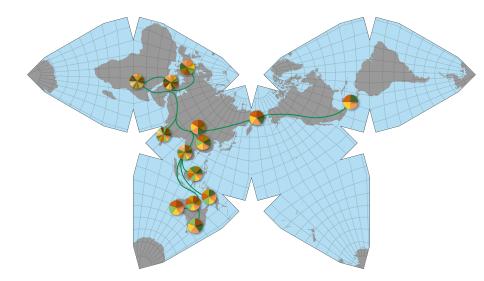

An Illustration of the Serial Founder Effect

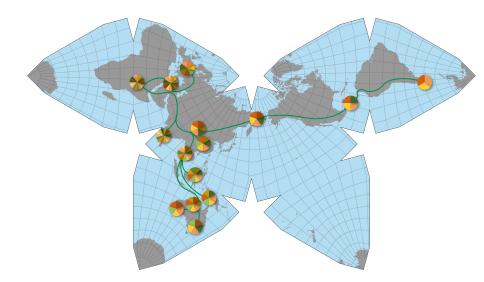


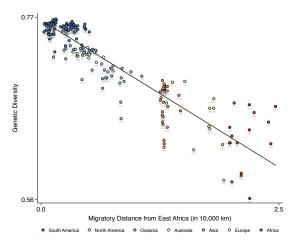

13 / 1


An Illustration of the Serial Founder Effect

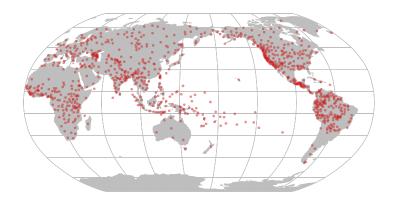




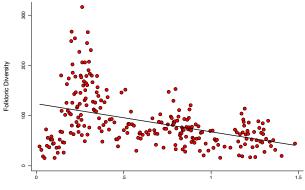




Observed Diversity - 207 Ethnic Groups



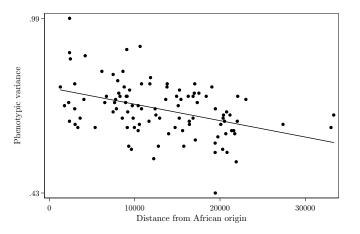
Migratory Distance from Africa and Population Diversity



Source: Ashraf-Galor, AER 2013, Arbatli-Ashraf-Galor-Klemp, ECMA, 2020

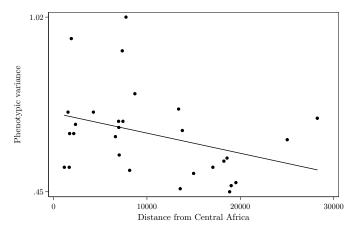
Folkloric Diversity — 958 Ethnic Groups (Berezkin's Folklore & Mythology Catalogue)

Migratory Distance from Africa and Folkloric Diversity

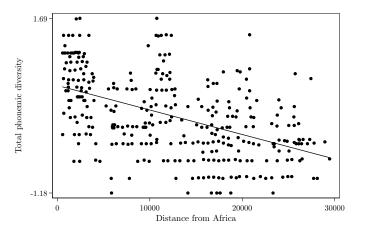


Migratory distance from East Africa (20,000 km)

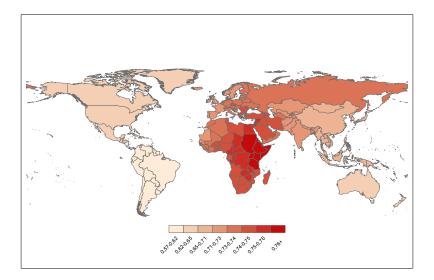
Slope coefficient = -55.572; (robust) standard error = 6.822; t-statistic = -8.146; observations = 958


Source: Galor-Klemp-Wainstock, 2023

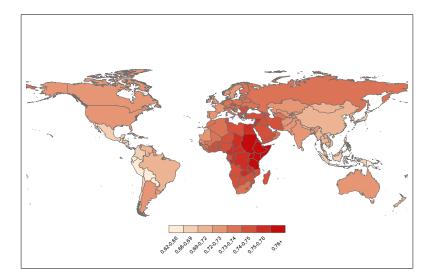
Migratory Distance from Africa and Craniometric Diversity


Source: Manica et al., Nature 2007

Migratory Distance from Africa and Pelvic Bone Diversity


Source: Betti et al., Proceedings of the Royal Society 2018

Migratory Distance from Africa and Phonemic Diversity



Source: Atkinson, Science 2011

Migratory Distance from Africa & Population Diversity (pre-1500)

Migratory Distance from Africa & Population Diversity (post-1500)

Moderate population diversity maximizes productivity

- Moderate population diversity maximizes productivity
 - Balances between:

- Moderate population diversity maximizes productivity
 - Balances between:
 - The adverse effect of diversity on social cohesiveness

- Moderate population diversity maximizes productivity
 - Balances between:
 - The adverse effect of diversity on social cohesiveness
 - The beneficial effect of diversity for creativity and innovations

- Moderate population diversity maximizes productivity
 - Balances between:
 - The adverse effect of diversity on social cohesiveness
 - The beneficial effect of diversity for creativity and innovations
 - Productivity maximizing diversity increases in the development process

• Human diversity increases :

- Human diversity increases :
 - Mistrust

- Human diversity increases :
 - Mistrust
 - Disagreement about the desirable public goods

- Human diversity increases :
 - Mistrust
 - Disagreement about the desirable public goods

- Human diversity increases :
 - Mistrust
 - Disagreement about the desirable public goods
 - ⇒ Civil conflicts
 - \Longrightarrow Inefficient productivity relative to the PPF

Population diversity increases:

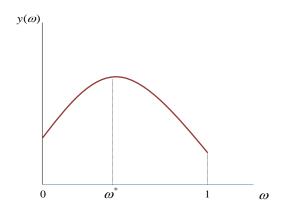
- Population diversity increases:
 - Cross-fertilization & complementaries in the production process

- Population diversity increases:
 - Cross-fertilization & complementaries in the production process
 - Upper tail of the distribution that matters for innovations

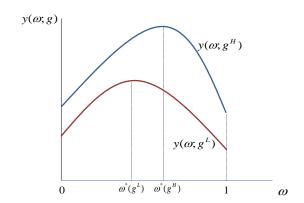
- Population diversity increases:
 - Cross-fertilization & complementaries in the production process
 - Upper tail of the distribution that matters for innovations
 - \implies Diversity fosters innovations & expands the PPF

Positive & diminishing effects of:

34 / 1


- Positive & diminishing effects of:
 - Diversity on innovations

- Positive & diminishing effects of:
 - Diversity on innovations
 - Homogeneity on social cohesiveness


- Positive & diminishing effects of:
 - Diversity on innovations
 - Homogeneity on social cohesiveness
 - \implies A hump-shaped relationship between diversity & development

- Positive & diminishing effects of:
 - Diversity on innovations
 - Homogeneity on social cohesiveness
 - A hump-shaped relationship between diversity & development
 - Optimal level of diversity (for each stage of development)

The Level of Population Diversity that Maximizes Productivity

Growth Enhancing Diversity in a Changing Technological Progress

• Major hurdles:

- Major hurdles:
 - \bullet Observed population diversity is endogenous to the development process

- Major hurdles:
 - Observed population diversity is endogenous to the development process
 - Prosperity may attract migrants and may thus increase diversity

- Major hurdles:
 - Observed population diversity is endogenous to the development process
 - Prosperity may attract migrants and may thus increase diversity
 - Prosperity may trigger conflicts that may affect diversity

- Major hurdles:
 - Observed population diversity is endogenous to the development process
 - Prosperity may attract migrants and may thus increase diversity
 - Prosperity may trigger conflicts that may affect diversity
 - Observed population diversity is available only for ethnic groups

- Major hurdles:
 - Observed population diversity is endogenous to the development process
 - Prosperity may attract migrants and may thus increase diversity
 - Prosperity may trigger conflicts that may affect diversity
 - Observed population diversity is available only for ethnic groups
 - Aggregation of diversity from ethnic groups to countries

- Major hurdles:
 - Observed population diversity is endogenous to the development process
 - Prosperity may attract migrants and may thus increase diversity
 - Prosperity may trigger conflicts that may affect diversity
 - Observed population diversity is available only for ethnic groups
 - Aggregation of diversity from ethnic groups to countries
 - Adjustment of population diversity for migration in post-1500 period

Empirical Strategy

• Cross-country analysis: Pre-colonial era:

Empirical Strategy

- Cross-country analysis: Pre-colonial era:
 - Projected diversity (145 countries) based on:

Empirical Strategy

- Cross-country analysis: Pre-colonial era:
 - Projected diversity (145 countries) based on:
 - Pre-historic migratory distance from Africa

- Cross-country analysis: Pre-colonial era:
 - Projected diversity (145 countries) based on:
 - Pre-historic migratory distance from Africa
- Cross-country analysis: Modern era:

- Cross-country analysis: Pre-colonial era:
 - Projected diversity (145 countries) based on:
 - Pre-historic migratory distance from Africa
- Cross-country analysis: Modern era:
 - Predicted diversity (145 countries) based on:

- Cross-country analysis: Pre-colonial era:
 - Projected diversity (145 countries) based on:
 - Pre-historic migratory distance from Africa
- Cross-country analysis: Modern era:
 - Predicted diversity (145 countries) based on:
 - Distance from Africa of the ancestral populations of each country

- Cross-country analysis: Pre-colonial era:
 - Projected diversity (145 countries) based on:
 - Pre-historic migratory distance from Africa
- Cross-country analysis: Modern era:
 - Predicted diversity (145 countries) based on:
 - Distance from Africa of the ancestral populations of each country
 - Pairwise distances (Fst) between the ancestral populations

- Cross-country analysis: Pre-colonial era:
 - Projected diversity (145 countries) based on:
 - Pre-historic migratory distance from Africa
- Cross-country analysis: Modern era:
 - Predicted diversity (145 countries) based on:
 - Distance from Africa of the ancestral populations of each country
 - Pairwise distances (Fst) between the ancestral populations
- Across ethnic groups

- Cross-country analysis: Pre-colonial era:
 - Projected diversity (145 countries) based on:
 - Pre-historic migratory distance from Africa
- Cross-country analysis: Modern era:
 - Predicted diversity (145 countries) based on:
 - Distance from Africa of the ancestral populations of each country
 - Pairwise distances (Fst) between the ancestral populations
- Across ethnic groups
 - Observed diversity (207 ethnic groups)

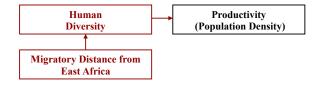
- Cross-country analysis: Pre-colonial era:
 - Projected diversity (145 countries) based on:
 - Pre-historic migratory distance from Africa
- Cross-country analysis: Modern era:
 - Predicted diversity (145 countries) based on:
 - Distance from Africa of the ancestral populations of each country
 - Pairwise distances (Fst) between the ancestral populations
- Across ethnic groups
 - Observed diversity (207 ethnic groups)
 - IV- Migratory distance from Africa

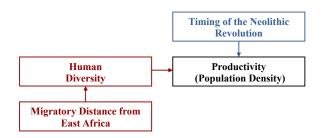
- Cross-country analysis: Pre-colonial era:
 - Projected diversity (145 countries) based on:
 - Pre-historic migratory distance from Africa
- Cross-country analysis: Modern era:
 - Predicted diversity (145 countries) based on:
 - Distance from Africa of the ancestral populations of each country
 - Pairwise distances (Fst) between the ancestral populations
- Across ethnic groups
 - Observed diversity (207 ethnic groups)
 - IV- Migratory distance from Africa
 - Predicted diversity (1265 ethnic groups) based on:

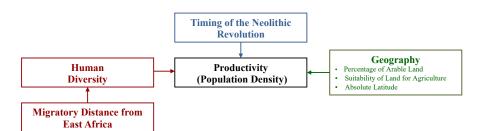
- Cross-country analysis: Pre-colonial era:
 - Projected diversity (145 countries) based on:
 - Pre-historic migratory distance from Africa
- Cross-country analysis: Modern era:
 - Predicted diversity (145 countries) based on:
 - Distance from Africa of the ancestral populations of each country
 - Pairwise distances (Fst) between the ancestral populations
- Across ethnic groups
 - Observed diversity (207 ethnic groups)
 - IV- Migratory distance from Africa
 - Predicted diversity (1265 ethnic groups) based on:
 - Pre-historic migratory distance from Africa

• The effect of diversity on productivity in the years 1-1500 CE:

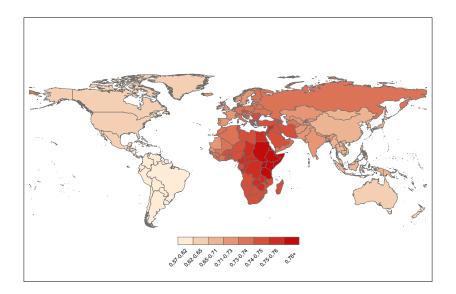
- The effect of diversity on productivity in the years 1-1500 CE:
 - Productivity is captured by population density (Malthusian Epoch)


- The effect of diversity on productivity in the years 1-1500 CE:
 - Productivity is captured by population density (Malthusian Epoch)
- Disentangle effects of:

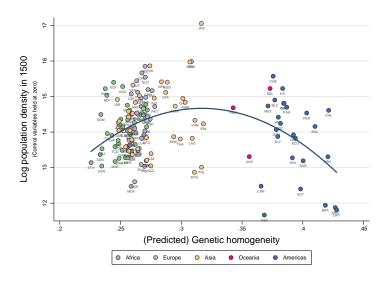

- The effect of diversity on productivity in the years 1-1500 CE:
 - Productivity is captured by population density (Malthusian Epoch)
- Disentangle effects of:
 - Population Diversity


- The effect of diversity on productivity in the years 1-1500 CE:
 - Productivity is captured by population density (Malthusian Epoch)
- Disentangle effects of:
 - Population Diversity
 - Geographic Factors: Land productivity, Absolute latitude

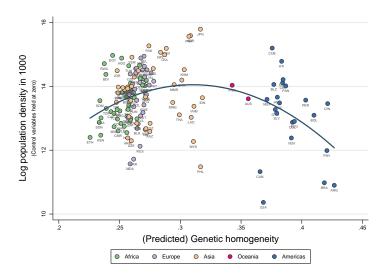
- The effect of diversity on productivity in the years 1-1500 CE:
 - Productivity is captured by population density (Malthusian Epoch)
- Disentangle effects of:
 - Population Diversity
 - Geographic Factors: Land productivity, Absolute latitude
 - Time elapsed since the Neolithic Revolution


Productivity (Population Density)

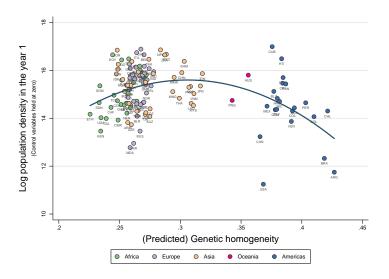
Predicted Population Diversity across Countries in the Pre-Colonial Era



Predicted Diversity and Comparative Development in 1500


	(1)	(2)	(3)	(4)	(5)	(6)
	Dependent Variable is Log Population Density in 1500					
Predicted Diversity	251.0*** (68.26)		213.5*** (63.50)	203.0*** (61.05)	195.4*** (56.09)	199.7** (80.51)
Predicted Diversity Sqr.	-177.4*** (50.22)		-152.1*** (46.65)	-142.0*** (44.83)	-138.0*** (40.84)	-146.2*** (56.26)
Log Years since NR		1.29*** (0.18)	1.05*** (0.19)		1.16*** (0.15)	1.24*** (0.24)
Log % of Arable Land				0.52*** (0.12)	0.40*** (0.09)	0.39*** (0.10)
Log Absolute Latitude				-0.17* (0.09)	-0.34*** (0.09)	-0.42*** (0.12)
Log Agri. Suitability				0.19 (0.12)	0.31*** (0.10)	0.26*** (0.10)
Optimal Diversity	0.707 (0.021)		0.702 (0.025)	0.715 (0.110)	0.708 (0.051)	0.683 (0.110)
Continent Dummies	No	No	No	No	No	Yes
Observations	145	145	145	145	145	145
R-squared	0.22	0.26	0.38	0.50	0.67	0.69

Oded Galor


Predicted Diversity and Comparative Development in 1500

Predicted Diversity and Comparative Development in 1000 CE

Predicted Diversity and Comparative Development in 1 CE

Robustness: Distances from Placebo Origins

	(1)	(2)	(3)	(4)	(5)
	Dependent Variable: Log Population Density in 1500				
Distance calculated from:	Addis Ababa	Addis Ababa	London	Tokyo	Mexico City
Migratory Distance	0.138** (0.061)		-0.040 (0.063)	0.052 (0.145)	-0.063 (0.099)
Migratory Distance Sqr.	-0.008*** (0.002)		-0.002 (0.002)	-0.006 (0.007)	0.005 (0.004)
Aerial Distance		-0.008 (0.106)			
Aerial Distance Sqr.		-0.005 (0.006)			
Log Years since NR	1.160*** (0.144)	1.158*** (0.138)	1.003*** (0.164)	1.047*** (0.225)	1.619*** (0.277)
Log % of Arable Land	0.401*** (0.091)	0.488*** (0.102)	0.357*** (0.092)	0.532*** (0.089)	0.493*** (0.094)
Log Absolute Latitude	-0.342*** (0.091)	-0.263*** (0.097)	-0.358*** (0.112)	-0.334*** (0.099)	-0.239*** (0.083)
Log Agri. Suitability	0.305*** (0.091)	0.254** (0.102)	0.344*** (0.092)	0.178** (0.080)	0.261*** (0.092)
Observations	145	145	145	145	145
R-squared	0.67	0.59	0.67	0.59	0.63

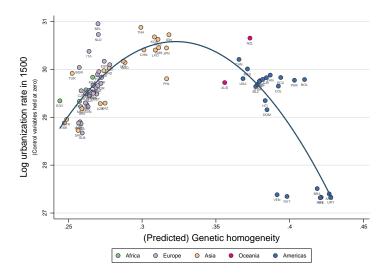
Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Regional Technological Frontiers

City & Modern Location	Continent	Sociopolitical Entity	Period
Cairo, Egypt Fez, Morocco London, UK Paris, France Constantinople, Turkey Peking, China Tenochtitlan, Mexico Cuzco, Peru	Africa Africa Europe Europe Asia Americas Americas	Mamluk Sultanate Marinid Kingdom of Fez Tudor Dynasty Valois-Orléans Dynasty Ottoman Empire Ming Dynasty Aztec Civilization Inca Civilization	1500 CE 1500 CE 1500 CE 1500 CE 1500 CE 1500 CE 1500 CE 1500 CE
Cairo, Egypt Kairwan, Tunisia Constantinople, Turkey Cordoba, Spain Baghdad, Iraq Kaifeng, China Tollan, Mexico Huari, Peru	Africa Africa Europe Europe Asia Americas Americas	Fatimid Caliphate Berber Zirite Dynasty Byzantine Empire Caliphate of Cordoba Abbasid Caliphate Song Dynasty Classic Maya Civilization Huari Culture	1000 CE 1000 CE 1000 CE 1000 CE 1000 CE 1000 CE 1000 CE 1000 CE
Alexandria, Egypt Carthage, Tunisia Athens, Greece Rome, Italy Luoyang, China Seleucia, Iraq Teotihuacán, Mexico Cahuachi, Peru	Africa Africa Europe Europe Asia Americas Americas	Roman Empire Roman Empire Roman Empire Roman Empire Han Dynasty Seleucid Dynasty Pre-classic Maya Civilization Nazca Culture	1 CE 1 CE 1 CE 1 CE 1 CE 1 CE 1 CE 1 CE

Robustness to Distance from Regional Technological Frontiers

	(1)	(2)	(3)
	Log Population Density 1500 CE	Log Population Density 1000 CE	Log Population Density 1 CE
Predicted Diversity	156.7** (77.98)	183.8** (91.20)	215.86** (106.5)
Predicted Diversity Sqr.	-114.6** (54.67)	-134.6** (63.65)	-157.7** (74.82)
Log Years since NR	Yes	Yes	Yes
Land Prod. Controls	Yes	Yes	Yes
Log Distance to Frontier in 1500 CE	-0.19*** (0.07)		
Log Distance to Frontier in 1000 CE		-0.23** (0.11)	
Log Distance to Frontier in 1 CE			-0.30*** (0.10)
Optimal Diversity	0.684 (0.169)	0.683 (0.218)	0.684 (0.266)
Continent Dummies	Yes	Yes	Yes
Observations	145	140	126
R-squared	0.72	0.64	0.66


Bootstrap standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Robustness to the Use of Urbanization Rates in 1500

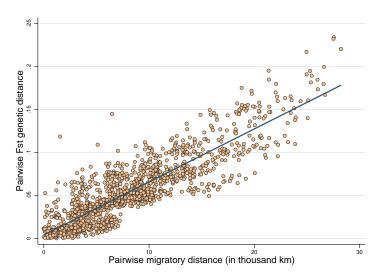
	(1)	(2)	(3)	(4)	(5)	
	Dependent Variable: Log Urbanization Rate in 1500					
Predicted Diversity	120.6** (51.62)	165.2*** (50.08)	93.46* (48.77)	148.8*** (48.37)	234.4*** (67.32)	
Predicted Diversity Square	-84.76** (38.42)	-120.1*** (37.21)	-62.41* (36.65)	-106.2*** (36.51)	-166.8*** (48.78)	
Log Years since NR		0.457** (0.224)		0.402** (0.202)	0.752*** (0.257)	
Log % of Arable Land			-0.097** (0.043)	-0.116*** (0.044)	-0.119** (0.052)	
Log Absolute Latitude			-0.334** (0.151)	-0.236 (0.155)	-0.151 (0.170)	
Log Agri. Suitability			0.002 (0.057)	-0.036 (0.058)	0.031 (0.059)	
Continent Dummies	No	No	No	No	Yes	
Observations	80	80	80	80	80	
R-squared	0.30	0.35	0.40	0.44	0.51	

Bootstrap standard errors in parentheses; *** p i 0.01, ** p i 0.05, * p i 0.1.

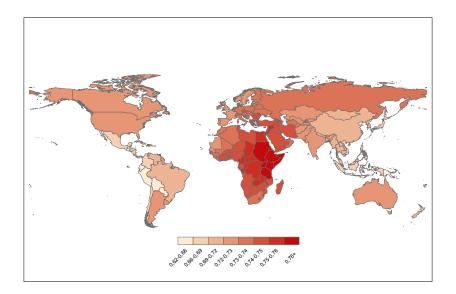
Population Diversity and Urbanization Rates in 1500

• The index of contemporary population diversity captures:

- The index of contemporary population diversity captures:
 - Proportional representation of each ancestral population within a country


- The index of contemporary population diversity captures:
 - Proportional representation of each ancestral population within a country
 - Predicted diversity among the ancestral populations of each country

- The index of contemporary population diversity captures:
 - Proportional representation of each ancestral population within a country
 - Predicted diversity among the ancestral populations of each country
 - Based on migratory distance of this ancestral population from East Africa

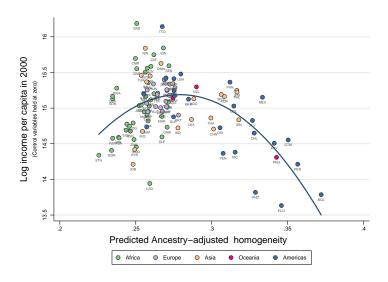

- The index of contemporary population diversity captures:
 - Proportional representation of each ancestral population within a country
 - Predicted diversity among the ancestral populations of each country
 - Based on migratory distance of this ancestral population from East Africa
 - Predicted distance between all pairs of these ancestral populations

- The index of contemporary population diversity captures:
 - Proportional representation of each ancestral population within a country
 - Predicted diversity among the ancestral populations of each country
 - Based on migratory distance of this ancestral population from East Africa
 - Predicted distance between all pairs of these ancestral populations
 - Based on pairwise migratory distance between these ancestral populations

Pairwise Population Distances

Population Diversity across Countries in 2000

Predicted Diversity and Economic Development in 2000 and 1500


	(1)	(2)	(3)	(4)
	Log Income per Capita in 2000			Log Population Density in 1500
Adjusted Diversity	204.6** (88.47)	237.2*** (86.23)	245.0*** (85.45)	
Adjusted Diversity Sqr.	-143.5** (62.5)	-166.5*** (61.36)	-171.4*** (60.84)	
Unadjusted. Diversity	(* 5)	(3 23)	(33.2.)	198.6** (79.11)
Unadjusted. Diversity Sqr.				-145.3*** (55.472)
Log Adj. Years since NR		0.061 (0.262)	0.002 (0.305)	
Log Years since NR	-0.151 (0.186)			1.238*** (0.230)
Log % of Arable Land	-0.110 (0.100)	-0.119 (0.107)	-0.137 (0.111)	0.378*** (0.100)
Log Absolute Latitude	0.164 (0.125)	0.172 (0.119)	0.192 (0.143)	-0.423*** (0.124)
Log Agri. Suitability	-0.193** (0.095)	-0.177* (0.102)	-0.189* (0.102)	0.264*** (0.096)
Log Population Density in 1500			0.047 (0.097)	
Optimal Diversity	0.713 (0.100)	0.712 (0.036)	0.715 (0.118)	0.683 (0.095)
Continent Dummies Observations R-squared	Yes 143 0.57	Yes 143 0.57	Yes 143 0.57	Yes 143 0.68

Bootstrap standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Population Diversity and Comparative Development in 2000

	(1)	(2)	(3)	(4)	(5)	
	Dependent Variable: Log Income per Capita in 2000					
Adjusted Diversity	315.3*** (84.22)	225.9*** (67.67)	204.1*** (66.97)	277.3*** (70.23)	215.7*** (63.95)	
Adjusted Diversity Sqr.	-221.0*** (59.56)	-155.8*** (47.96)	-140.9*** (47.39)	-192.4*** (49.68)	-150.9*** (45.55)	
Log Adj. Time from NR	-0.273 (0.269)	-0.092 (0.200)	-0.062 (0.203)	0.396* (0.233)	-0.046 (0.208)	
Log % of Arable Land	-0.218***	-0.159***	-0.163***	-0.183***	-0.084	
Log Absolute Latitude	(0.061) 0.123	(0.049) 0.083	(0.050) 0.080	(0.051) 0.009	(0.056) -0.006	
Social Infrastructure	(0.122)	(0.100) 2.359*** (0.269)	(0.101) 2.069*** (0.377)	(0.108) 1.826*** (0.417)	(0.087) 0.880** (0.418)	
Democracy			0.036 (0.029)			
Ethnic Fractionalization			(0.029)	-0.333 (0.280)	-0.122 (0.265)	
% Population at Risk of Contracting Malaria				-0.502 (0.351)	-0.723** (0.353)	
Avg. Schooling					0.134*** (0.042)	
Optimal Diversity	0.713 (0.014)	0.725 (0.032)	0.725 (0.045)	0.721 (0.008)	0.715 (0.073)	
Continent Dummies	Yes	Yes	Yes	Yes	Yes	
Legal Origin Dummies Major Religion Shares	No No	No No	No No	Yes Yes	Yes Yes	
Observations	109	109	109	109	94	
R-squared	0.74	0.84	0.85	0.90	0.93	

Predicted Diversity and Comparative Development in 2000

ullet Income maximizing diversity in 2000 = 0.7208 pprox GD in US = 0.7206

- Income maximizing diversity in 2000 = 0.7208 \approx GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:

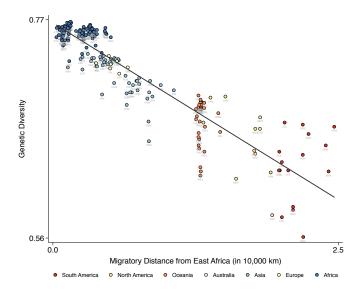
- Income maximizing diversity in $2000 = 0.7208 \approx \text{GD}$ in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - $0.09 \implies 5.4$ -fold increase income per capita in 2000

- Income maximizing diversity in 2000 = 0.7208 \approx GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - $0.09 \implies 5.4$ -fold increase income per capita in 2000
 - From 9% to 40% of that of the US

- ullet Income maximizing diversity in 2000 = 0.7208 pprox GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - 0.09 \implies 5.4-fold increase income per capita in 2000
 - From 9% to 40% of that of the US
- Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:

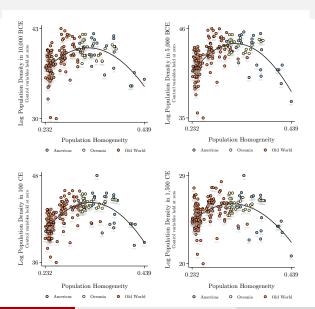
- Income maximizing diversity in 2000 = 0.7208 \approx GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - 0.09 \implies 5.4-fold increase income per capita in 2000
 - From 9% to 40% of that of the US
- Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:
 - $0.05 \implies 1.7$ -fold increase in income per capita in 2000

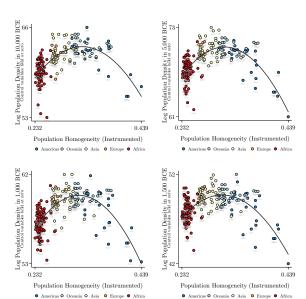
- ullet Income maximizing diversity in 2000 = 0.7208 pprox GD in US = 0.7206
- Increasing GD of Bolivia (0.63), the most homogeneous country, by:
 - 0.09 \implies 5.4-fold increase income per capita in 2000
 - From 9% to 40% of that of the US
- Decreasing GD of Ethiopia (0.77), the most heterogeneous country, by:
 - $0.05 \implies 1.7$ -fold increase in income per capita in 2000
 - From 2% to 4% of that of the US

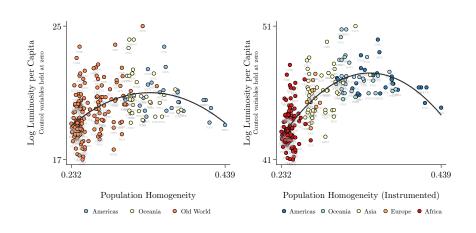

Addressing Endogenous Post-1500 Migrations

	(1)	(2)	(3)	(4)	(5)	(6)	
	Full Sample	Non OECD	w/o Neo Europes	w/o Latin America	w/o Sub Sahara	>0.97 Indigenous	
	Dependent Variable is Log Income per Capita in 2000						
Adjusted Diversity	277.3*** (70.2)	222.0*** (88.48)	261.4*** (70.53)	412.2*** (148.6)	264.8** (111.4)	304.7** (111.6)	
Adjusted Diversity Sqr.	-192.4*** (49.68)	-189.0*** (62.10)	-181.8*** (49.67)	-287.1*** (101.9)	-183.9 ** (80.40)	-213.4** (77.26)	
Log Adj. Time of NR	0.396* (0.233)	0.390 (0.281)	0.355 (0.231)	0.518* (0.298)	0.068 (0.442)	0.448* (0.254)	
Log % of Arable Land	-0.183*** (0.051)	-0.236*** (0.060)	-0.201*** (0.055)	-0.189*** (0.050)	-0.211** (0.097)	-0.104 (0.061)	
Log Absolute Latitude	0.009 (0.108)	-0.021 (0.119)	-0.025 (0.111)	-0.139′ (0.126)	0.218 (0.242)	-0.074 (0.130)	
Social Infrastructure	ì.826*** (0.417)	ì.313** (0.579)	1.416*** (0.507)	2.044*** (0.545)	1.585*** (0.486)	1.311*´ (0.716)	
Ethnic Frac.	-0.333´ (0.280)	-0.437´ (0.375)	-0.390´ (0.300)	-`0.752** (0.348)	0.104 (0.408)	-0.044´ (0.412)	
% Population at Risk	-0.502	-0.605	-0.591	-0.308	-0.425	-0.153	
of Malaria % Population Living	(0.351) -0.319	(0.381) -0.196	(0.370) -0.302	(0.486) -0.520**	(0.581) -0.528	(0.434) -0.339	
in Tropical Zones	(0.204)	(0.239)	(0.219)	(0.252)	(0.341)	(0.312)	
Optimal Diversity	0.721	0.720	0.719	0.718	0.720	0.714	
	(0.083)	(0.085)	(0.015)	(0.023)	(0.180)	(0.012)	
Observations	109 0.90	83 0.82	105 0.89	87 0.93	71 0.86	37	
R-squared	strap standard e					0.98	

Observed Population Diversity - 207 Ethnic Groups


Migratory Distance from Africa and Population Diversity


Predicted Diversity - 1265 Ethnic Groups


Observed Population Diversity & Population Density 10,000 BCE - 1500 CE

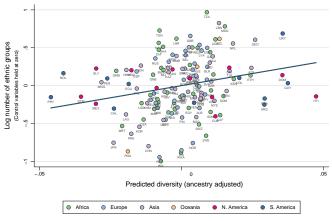
Observed Diversity and Population Density 10,000 BCE - 1500 CE - IV

Population Diversity and Luminosity across Ethnic Groups

• Population diversity increases the incidence of:

- Population diversity increases the incidence of:
 - Ethnolinguistic fragmentation

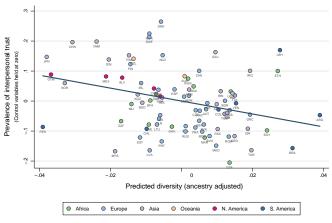
- Population diversity increases the incidence of:
 - Ethnolinguistic fragmentation
 - Mistrust


- Population diversity increases the incidence of:
 - Ethnolinguistic fragmentation
 - Mistrust
 - Diversity in preferences for public goods

- Population diversity increases the incidence of:
 - Ethnolinguistic fragmentation
 - Mistrust
 - Diversity in preferences for public goods
 - Civil conflicts

- Population diversity increases the incidence of:
 - Ethnolinguistic fragmentation
 - Mistrust
 - Diversity in preferences for public goods
 - Civil conflicts
- Population diversity increases the:

- Population diversity increases the incidence of:
 - Ethnolinguistic fragmentation
 - Mistrust
 - Diversity in preferences for public goods
 - Civil conflicts
- Population diversity increases the:
 - Complementaries in the production process and innovations


Cost of Diversity - Diversity & Cultural Fragmentation

Relationship conditional on historical and geographical controls, as well as continent fixed effects Slope coefficient = 6.397; (robust) standard error = 1.973; t-statistic = 3.242; partial R-squared = 0.059; observations = 144 Source: Ashraf and Galor (2013b)

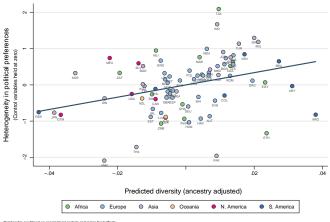
Source: Ashraf-Galor (AER, May 2013)

Cost of Diversity - Diversity & Trust

Relationship conditional on geographical controls and region fixed effects Slope coefficient = -2,151; (robust) standard error = 0.756; 1-statistic = -2,845; partial R-squared = 0.105; observations = 84 Source: Arbatil, Ashrat, and Galor (2015)

Diversity & Trust – 2nd-Generation Migrants (US)

	Trust				
	(1)	(2)	(3)	(4)	
Predicted Population Diversity (Ancestral country)	-7.008 ***	-7.750 ***	-8.045***	-8.605***	
	(0.011)	(0.577)	(2.325)	(2.599)	
Ancestral Continent FE Year FE	Yes No	Yes Yes	Yes Yes	Yes Yes	
Age & Gender FE Income FE	No No	Yes No	Yes Yes	Yes Yes	
Religion FE	No	No	Yes	Yes	
Education FE US Region FE	No No	No No	Yes No	Yes Yes	
Observations	1149	1149	906	906	
Adjusted R ²	0.062	0.168	0.216	0.231	

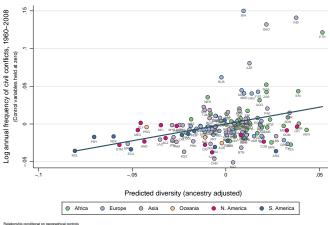

Source: Arbatli-Ashraf-Galor-Klemp (ECMA, 2020)

Diversity & Trust – 2nd-Generation Migrants (Africa)

	Trust				
	(1)	(2)	(3)	(4)	
Observed Population Diversity (Ancestral ethnic homeland)	-23.010**	-21.851**	-28.775**	-25.436***	
(Allestral etillic nomeralia)	(10.472)	(10.148)	(11.959)	(7.588)	
Host Country FE	Yes	Yes	Yes	Yes	
Age & Gender FE Slave Exports	No No	Yes Yes	Yes Yes	Yes Yes	
Living Conditions FE	No	No	No	Yes	
Education FE	No	No	No	Yes	
Observations	3448	3448	3448	3448	
Adjusted R ²	0.220	0.227	0.236	0.253	

Source: Arbatli-Ashraf-Galor-Klemp (ECMA, 2020)

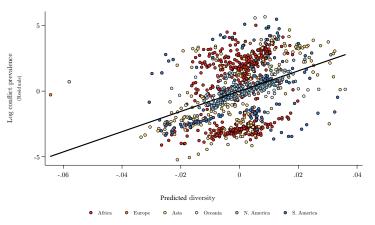
Cost of Diversity – Diversity & Heterogeneity in Preferences



Relationship conditional on geographical controls and region fixed effects
Slope coefficient = 16.963; (robust) standard error = 5.964; 1-statistic = 2.849; partial R-squared = 0.111; observations = 81
Source: Arbait, Ashrat, and Salor (2015)

Cost of Diversity - Diversity & Civil Conflict across Countries

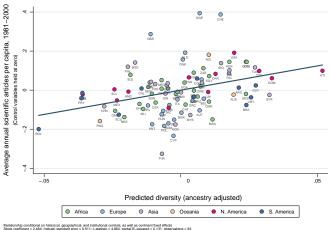
	Log Civil Conflict Onsets, 1960-2017				
	OLS	OLS	OLS	IV	
Population diversity (ancestry adjusted)	0.209*** (0.066)	0.318*** (0.119)		0.537*** (0.176)	
Within-group population diversity			0.364*** (0.140)		
Between-group population diversity			0.284* (0.166)		
Ethnic fractionalization		0.004 (0.013)	0.004 (0.013)	-0.005 (0.010)	
Ethnolinguistic polarization		0.014	0.014 (0.012)	0.020* (0.012)	
Geographic Controls Continent dummies		×	×	×	
Observations Adjusted R^2	150 0.029	150 0.215	150 0.212	150	
First Stage				Pop Diversity	
Migratory distance from East Africa				- 0.065*** (0.007)	
First-stage F statistic				92.69	


Cost of Diversity - Diversity & Civil Conflict across Countries

Slope coefficient = 0.445; (robust) standard error = 0.117; t-statistic = 3.790; partial R-squared = 0.112; observations = 151 Source: Arbatli, Ashraf, and Galor (2015)

Source: Arbatli-Ashraf-Galor-Klemp (ECMA, 2019)

Cost of Diversity: Diversity & Civil Conflict across Ethnic Homelands



Relationship in the global sample; conditional on baseline geographical controls

Slope coefficient = 77.170; (robust) standard error = 6.089; t-statistic = 12.675; partial R-souared = 0.145; observations = 1238

Source: Arbatli-Ashraf-Galor-Klemp (ECMA, 2019)

Mechanisms: Benefits of Diversity - Diversity & Scientific Research

Source: Ashraf and Galor (2013a)

Conclusions: Roots of Comparative Development

• The migration of humans out of Africa 60,000-90,000 BP affected

Conclusions: Roots of Comparative Development

- The migration of humans out of Africa 60,000-90,000 BP affected
 - The distribution of population diversity across the globe

- The migration of humans out of Africa 60,000-90,000 BP affected
 - The distribution of population diversity across the globe
 - Comparative economic development

- The migration of humans out of Africa 60,000-90,000 BP affected
 - The distribution of population diversity across the globe
 - Comparative economic development
 - Accounts for 1/5 of the variation in the income per capita across countries

- The migration of humans out of Africa 60,000-90,000 BP affected
 - The distribution of population diversity across the globe
 - Comparative economic development
 - Accounts for 1/5 of the variation in the income per capita across countries
- Variation in the onset of the Neolithic Revolution

- The migration of humans out of Africa 60,000-90,000 BP affected
 - The distribution of population diversity across the globe
 - Comparative economic development
 - Accounts for 1/5 of the variation in the income per capita across countries
- Variation in the onset of the Neolithic Revolution
 - Affected comparative development till around 1500

- The migration of humans out of Africa 60,000-90,000 BP affected
 - The distribution of population diversity across the globe
 - Comparative economic development
 - Accounts for 1/5 of the variation in the income per capita across countries
- Variation in the onset of the Neolithic Revolution
 - Affected comparative development till around 1500
 - Has no persistent effect on comparative development in the modern era

• Diversity adversely affects social cohesiveness, increasing the incidence of:

- Diversity adversely affects social cohesiveness, increasing the incidence of:
 - Mistrust (Ashraf-Galor, AER 2013)

- Diversity adversely affects social cohesiveness, increasing the incidence of:
 - Mistrust (Ashraf-Galor, AER 2013)
 - Civil conflicts (Arbatli-Ashraf-Galor-Kemp, ECMA 2019)

- Diversity adversely affects social cohesiveness, increasing the incidence of:
 - Mistrust (Ashraf-Galor, AER 2013)
 - Civil conflicts (Arbatli-Ashraf-Galor-Kemp, ECMA 2019)
 - Ethnic fractionalization (Ashraf-Galor, AER P&P 2013)

- Diversity adversely affects social cohesiveness, increasing the incidence of:
 - Mistrust (Ashraf-Galor, AER 2013)
 - Civil conflicts (Arbatli-Ashraf-Galor-Kemp, ECMA 2019)
 - Ethnic fractionalization (Ashraf-Galor, AER P&P 2013)
- Diversity enhances innovations and knowledge creation

Education policy

- Education policy
 - In overly-diverse societies:

- Education policy
 - In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance

- Education policy
 - In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 - ullet \Longrightarrow Mitigating the cost of diversity

- Education policy
 - In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 - ullet \Longrightarrow Mitigating the cost of diversity
 - In overly-homogeneous societies:

- Education policy
 - In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 - \implies Mitigating the cost of diversity
 - In overly-homogeneous societies:
 - cultivation of cultural diversity

- Education policy
 - In overly-diverse societies:
 - Education geared towards: social cohesiveness & tolerance
 - Mitigating the cost of diversity
 - In overly-homogeneous societies:
 - cultivation of cultural diversity
 - \Longrightarrow substitute for low predicted diversity